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Abstract

A non-Hermitian form of quantum electrodynamics (QED) is presented which
describes interacting Dirac monopoles. The theory is related by a canonical
transformation to a model proposed by Milton. As in Hermitian QED an
Abelian gauge potential is coupled to a four-component fermion. Under proper
Lorentz transformations and time reversal, the fermion field transforms like a
Dirac spinor but has a non-standard parity transformation. This implements
the property that magnetic charge, unlike electric charge, is parity odd. A
consequence of the non-Hermiticity is that there is an attractive force between
identical charged particles, at least in the weakly coupled regime. This effect
can be understood even at the classical level; a simple calculation of the force
between classical Dirac monopoles is presented which shows that like charge
monopoles attract and opposite charges repel.

PACS numbers: 11.15.−q, 12.20.−m, 14.80.Hv

This paper concerns the physical interpretation of non-Hermitian forms of quantum
electrodynamics (QED). In non-relativistic quantum mechanics some very simple non-
Hermitian Hamiltonians have been shown to exhibit a positive spectrum and unitary time
evolution [1, 2]. These remarkable properties have also been identified in certain quantum
field theories [3–5]. Tentative steps have been taken to apply these ideas to gauge theory. In
particular, Milton [6] has proposed a non-Hermitian version of QED. Unlike standard QED,
parity P and time reversal T are not symmetries of the theory. However, the combined
symmetry PT is respected and on this basis the theory is expected to exhibit a real energy
spectrum and unitary time evolution. The theory is also asymptotically free.

In this paper, an alternative Lagrangian for non-Hermitian QED is given. This theory is
symmetric under P and T . Under parity and time reversal the field strength transforms like the
Maxwell dual field strength. This, together with the transformation properties of the current,
suggests that the theory is a magnetic form of QED; the elementary fermions carry magnetic
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rather than electric charge. As the magnetic current is anti-Hermitian the force between like
charge particles is attractive rather than repulsive. In fact, it is possible to understand this
effect even at the classical level. A simple, albeit formal, argument is given that shows that the
force between two like charge Dirac monopoles is indeed attractive. Opposite charges repel.
A construction of free-field representations for the gauge and matter fields is outlined. This
analysis shows that the new theory is related by a canonical transformation to that of Milton.

Massless QED is based on the Lagrangian (the metric is diag(1,−1,−1,−1))

L = − 1
4FμνF

μν + iψ̄γ μ∂μψ + eψ̄γ μAμψ, (1)

where Fμν = ∂μAν − ∂νAμ. Here Aμ is a U(1) gauge potential and ψ is a Dirac spinor. The
corresponding quantum theory has a Hermitian Hamiltonian and is symmetric under parity P
and time reversal T . Milton considered the Lagrangian [6]1

L = − 1
4GμνG

μν + iψ̄γ μ∂μψ + igψ̄γ μBμψ, (2)

with Gμν = ∂μBν − ∂νBμ, Bμ being an Abelian gauge potential, ψ a Dirac spinor and g a real
coupling constant. The theory couples a gauge potential Bμ (assumed to be Hermitian) to the
anti-Hermitian current

jμ = igψ̄γ μψ. (3)

A consequence of the anti-Hermiticity is that the current has a non-standard transformation
law under the (anti-unitary) operation of time reversal

T j 0(r, t)T −1 = −j 0(r,−t), T j(r, t)T −1 = j(r,−t). (4)

Assuming the gauge potential transforms in the usual way under time reversal, i.e.

T B0(r, t)T −1 = B0(r,−t), T B(r, t)T −1 = −B(r,−t), (5)

the theory is not symmetric with respect to time reversal. The author of [6] was, however,
seeking a PT -symmetric theory. To achieve this the gauge potential Bμ is required to have
the pseudovector parity transformation

PB0(r, t)P−1 = −B0(−r, t), PB(r, t)P−1 = B(−r, t). (6)

The resulting theory is not parity symmetric but PT is a symmetry of the theory.
Now consider the Lagrangian

L = − 1
4HμνH

μν + iλ̄γ μ∂μλ + igλ̄γ μVμλ. (7)

Here Hμν = ∂μVν − ∂νVμ where the gauge potential Vμ has unconventional transformations
under both T and P , that is

T V0(r, t)T −1 = −V0(r,−t), T V(r, t)T −1 = V(r,−t), (8)

and

PV0(r, t)P−1 = −V0(−r, t), PV(r, t)P−1 = V(−r, t). (9)

The spinor field λ transforms like a Dirac spinor under proper Lorentz transformations and
time reversal. Under parity it transforms as

Pλα(r, t)P−1 = Pαβλ
†
β(−r, t), (10)

where Pαβ denotes the matrix elements of the Dirac matrix iγ 0γ 2 (here it is assumed that
γ0 = γ T

0 and γ2 = γ T
2 ). This does not look like a parity transformation; it is actually the

standard form of the CP transformation for Dirac spinor fields. In much the same way that

1 In [6] a real representation for Dirac spinors was adopted. In this paper, as also in [7], a conventional complex
representation is assumed.
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CP is unitary in standard QED (even though in one-particle Dirac theory it is anti-unitary) the
above P transformation is unitary. The theory couples the Hermitian gauge potential Vμ to
the anti-Hermitian current

jμ = igλ̄γ μλ. (11)

Under T and P2

T −1j 0(r, t)T = −j 0(r,−t), T −1j(r, t)T = j(r,−t)

P−1j 0(r, t)P = −j 0(−r, t), P−1j(r, t)P = j(−r, t).
(12)

This non-Hermitian theory is symmetric under T and P; the non-standard transformation
properties of Vμ compensate for those of jμ. The field strength Hμν transforms like the
Maxwell dual field strength and satisfies the P and T symmetric equation of motion

∂μHμν = jν. (13)

This indicates that the theory is a magnetic version of QED. That magnetic charge is parity
odd just as electric charge is CP-odd ‘explains’ the CP-like form of the parity transformation
for V and λ.

It remains to interpret the non-Hermiticity of the theory. A consequence of the anti-
Hermiticity of the current is an attractive force between identical charged particles, at least in
the weak coupling regime. In fact, this effect can be understood for classical Dirac monopoles.
It is proposed to compute the force between two static monopoles using the electromagnetic
energy density formula

u = 1
2 (E2 + B2). (14)

As the electric and magnetic fields enter this formula symmetrically, one might expect that
the force between Dirac monopoles follows exactly the same pattern as for electric charges.
It is argued below that the Dirac string of the monopole breaks this symmetry leading to an
attractive force for like charges.

A stationary Dirac monopole [9] centered at the origin can be described by the vector
potential

A = g

4πr

yi − xj

(r − z)
, (15)

where g is the magnetic charge. In this gauge the Dirac string lies on the positive z-axis. The
magnetic field is

B = ∇ × A = gr

4πr3
− gθ(z)δ(y)δ(z)k. (16)

Consider two Dirac monopoles with the magnetic charge g centered at the points r = ak and
r = −ak, respectively. The total magnetic energy can be expressed formally as the integral

E = 1

2

∫
d3x(B1 · B1 + B2 · B2 + 2B1 · B2), (17)

where B1 and B2 are the contributions to the magnetic field due to the first and second
monopoles, respectively. Now

U =
∫

d3x B1 · B2 (18)

2 Another anti-Hermitian current [8] with exactly these transformation properties is jμ = igψ̄γ μγ 5ψ . However,
as charge conservation is spoiled by the chiral anomaly it is not clear whether it leads to a consistent quantum field
theory.
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is the part of the energy needed for the force computation since the remainder comprises the
infinite self-energies of the two monopoles which do not depend on the monopole separation.
Inserting the two magnetic fields into (18) gives

U = g2

16π2

∫
d3x

(
r − ak

|r − ak|3 · r + ak

|r + ak|3 − 4πθ(z − a)δ(x)δ(y)k · r + ak

|r + ak|3

+ 4π
r − ak

|r − ak|3 · θ(−z − a)δ(x)δ(y)k

)
. (19)

Here B1 is a translation of (16) and

B2 = g

4π

r + ak

|r + ak|3 + gθ(−z − a)δ(y)δ(z)k, (20)

so that the Dirac string of the second monopole lies on the part of the negative axis below
z = −a. The first term in (19) gives the expected Coulomb repulsion, g2/(8π |a|). Performing
the other two integrals gives a contribution twice the Coulomb term but with the opposite sign.
Accordingly,

U = − g2

8π |a| , (21)

giving an attractive force between like charge monopoles. Similarly, the force between
opposite charges is repulsive. In this computation, we have taken the Dirac strings to lie on the
z-axis. However, the result is independent of the string placement (provided the two strings
do not intersect which would lead to an ill-defined cross term in the U integral). A relativistic
force law that incorporates the magnetic attraction property is

m
d2xμ

dτ 2
= (eFμν − gF̃μν)

dxν

dτ
, (22)

where τ denotes the proper time and F̃μν is the Hodge dual of Fμν . Maxwell’s equations are

∂μFμν = jν
e , ∂μF̃ μν = jν

m, (23)

where j
μ
e and j

μ
m are the electric and magnetic currents, respectively. This force law differs

from the one assumed by Dirac in [10]; Dirac’s force law gives a repulsive force between like
magnetic charges.

To conclude, the derivation of free-field representations for the QED theories is outlined.
It is instructive to start with the photon field for ordinary QED (see for example [11]). A free
photon field (the gauge is fixed so that A0 = 0 and ∇ · A = 0) takes the form

A(r, t) =
∫

d3k√
2ω(2π)3

2∑
λ=1

e(k, λ)[a(k, λ) e−ik·x + a†(k, λ) eik·x], (24)

Here k0 = ω = |k| so that kμkμ = 0. The polarization vectors, e(k, λ) λ = 1, 2, are
orthogonal to k, and satisfy

e(k, λ) · e(k′, λ) = δλλ′ , e(−k, 1) = −e(k, 1), e(−k, 2) = +e(k, 2). (25)

The creation and annihilation operators obey the commutation relations

[a(k, λ), a†(k′, λ′)] = δ3(k − k′)δλλ′ , (26)

and

[a(k, λ), a(k′, λ′)] = [a†(k, λ), a†(k′, λ′)] = 0. (27)
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The action of the discrete symmetries is as follows:

T −1A(r, t)T = −A(r,−t), P−1A(r, t)P = −A(−r, t),

(CP)−1A(r, t)CP = A(−r, t).
(28)

P and CP have the representations

P = exp

[
− iπ

2

∫
d3k

2∑
λ=1

(a†(k, λ)a(k, λ) + a†(k, λ)a(−k, λ))

]
, (29)

and

CP = exp

[
iπ

2

∫
d3k

2∑
λ=1

(a†(k, λ)a(k, λ) − a†(k, λ)a(−k, λ))

]
. (30)

We require a Hermitian quantum field Vμ satisfying the same commutation relations as
Aμ but with the opposite transformations to Aμ under T ,P and CP . Consider

V(r, t) =
∫

d3k√
2ω(2π)3

2∑
λ=1

e(k, λ)[ia(k, λ) e−ik·x − ia†(k, λ) eik·x]. (31)

This is the same as A(r, t) but with a(k, λ) replaced by ia(k, λ) and a†(k, λ) replaced by
−ia†(k, λ), a canonical transformation. The i insertions switch the time-reversal properties of
the field so that (8) holds. Note that P and CP are unaffected so that (9) is not satisfied.
However, all one needs to do is to swap P and CP . That is the parity operator P is
defined to be the standard form of CP and CP is defined to be the standard form of P .
The same procedure yields a free-field representation of the fermion λ; simply take a standard
Dirac fermion and exchange the definitions of P and CP . This provides a fermion field λ

with a standard T transform and the non-standard parity transformation (10). Interacting
fields may be formally defined in the usual way through V int

μ (r, t) = eiHtVμ(r, 0) e−iHt and
λint(r, t) = eiHtλ(r, 0) e−iHt .

To define Bμ in the Milton theory take Bμ to be Aμ and swap the definition of P and CP .
For the fermion field the standard definitions of P and CP are retained. This is consistent since
for free fields the parity operator decomposes into commuting gauge and fermionic pieces,
P = PgaugePfermion; one can choose a non-standard ‘magnetic’ Pgauge together with a standard
‘electric’ Pfermion. In fact, taking the ‘non-standard’ form for both Pgauge and Pfermion gives
a parity-symmetric theory. Then, the fermion would transform like λ and one can write the
Lagrangian as

L = − 1
4GμνG

μν + iλ̄γ μ∂μλ + igλ̄γ μBμλ, (32)

which is (7) with Vμ replaced by Bμ. As Bμ and Vμ are related by a canonical transformation
so are the two non-Hermitian theories.

References

[1] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243 (arXiv:physics/9712001)
[2] Dorey P, Dunning C and Tateo R 2001 J. Phys. A: Math. Gen. 34 5679 (arXiv:hep-th/0103051)
[3] Kleefeld F 2004 Non-Hermitian quantum theory and it holomorphic representation: introduction and some

applications arXiv:hep-th/0408028
[4] Kleefeld F 2004 Non-Hermitian quantum theory and its holomorphic representation: introduction and

applications arXiv:hep-th/0408097

5

http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://www.arxiv.org/abs/physics$/$9712001
http://dx.doi.org/10.1088/0305-4470/34/28/305
http://www.arxiv.org/abs/hep-th$/$0103051
http://www.arxiv.org/abs/hep-th$/$0408028
http://www.arxiv.org/abs/hep-th$/$0408097


J. Phys. A: Math. Theor. 41 (2008) 482001 Fast Track Communication

[5] Bender C M, Jones H F and Rivers R J 2005 Phys. Lett. B 625 333 (arXiv:hep-th/0508105)
[6] Milton K A 2004 Czech. J. Phys. 54 85 (arXiv:hep-th/0308035)
[7] Bender C M, Cavero-Pelaez I, Milton K A and Shajesh K V 2005 Phys. Lett. B 613 97 (arXiv:hep-th/0501180)
[8] Bender C M and Milton K A 1999 J. Phys. A: Math. Gen. 32 L87
[9] Dirac P A M 1931 Proc. R. Soc. A 133 60

[10] Dirac P A M 1948 Phys. Rev. 74 817
[11] Bjorken J D and Drell S 1965 Relativistic Quantum Fields (New York: McGraw-Hill)

6

http://dx.doi.org/10.1016/j.physletb.2005.08.087
http://www.arxiv.org/abs/hep-th$/$0508105
http://dx.doi.org/10.1023/B:CJOP.0000014372.21537.c0
http://www.arxiv.org/abs/hep-th$/$0308035
http://dx.doi.org/10.1016/j.physletb.2005.03.032
http://www.arxiv.org/abs/hep-th$/$0501180
http://dx.doi.org/10.1088/0305-4470/32/7/001
http://dx.doi.org/10.1098/rspa.1931.0130
http://dx.doi.org/10.1103/PhysRev.74.817

	
	References

